Урок 24. Фантомные ошибки
Мы закончили рассмотрение паттернов 64-битных ошибок. Последнее на чем мы остановимся в связи с этими ошибками, является то, как они могут проявляться в программах.
Дело в том, что не так просто показать в примере, что приведенный 64-битный код приведет к ошибке при большом значении N:
size_t N = ...
for (int i = 0; i != N; ++i)
{
...
}
Вы можете попробовать подобный простой пример и увидеть, что код работает. Дело в том, каким образом построит код оптимизирующий компилятор. Будет работать код или нет зависит от размера тела цикла. В примерах он всегда маленький, и для счетчиков могут использоваться 64-битные регистры. В реальных программах, с большими телами циклов, ошибка легко возникает, когда компилятор будет сохранять значение переменной "i" в памяти. А теперь давайте попробуем разобраться с непонятным текстом, который вы только что прочитали.
При описании ошибок, очень часто использовался термин "потенциальная ошибка" или словосочетание "возможно возникновение ошибки". В основном это объясняется тем, что один и тот же код можно считать как корректным, так и некорректным в зависимости от его назначения. Простой пример - использование для индексации элементов массива переменной типа int. Если с помощью этой переменной мы обращаемся к массиву графических окон, то все корректно. Не бывает нужно, да и не получится работать с миллиардами окон. А вот индексация с использованием переменной типа int к элементам массива в 64-битных математических программах или базах данных, вполне может представлять собой проблему, когда количество элементов выйдет из диапазона 0..INT_MAX.
Но есть и еще одна, куда более тонкая причина называть ошибки "потенциальными". Дело в том, проявит себя ошибка или нет, зависит не только от входных данных, но и от настроения оптимизатора компилятора. Большинство из рассмотренных в уроках ошибок хорошо проявляют себя в debug-версии, и "потенциальны" в release-версиях. Однако не всякую программу, собранную как debug, можно отлаживать на больших объемах данных. Возникает ситуация, когда debug-версия тестируется только на самых простых наборах данных. А нагрузочное тестирование и тестирование конечными пользователями на реальных данных, выполняется на release-версиях, где ошибки могут быть временно скрыты.
Впервые мы столкнулись с особенностями оптимизации компилятора Visual C++ 2005 при подготовке программы OmniSample. Это проект, который входит в состав дистрибутива PVS-Studio и предназначен для демонстрации всех ошибок, которые диагностирует анализатор Viva64. Примеры, которые содержатся в этом проекте, должны корректно работать в 32-битном режиме и приводить к ошибкам в 64-битном варианте. В отладочной версии все работало замечательно, а вот с release версией возникли затруднения. Тот код, который в 64-битном режиме должен был зависать или приводить к аварийному завершению программы - успешно работал! Причина оказалась в оптимизации. Решением стало дополнительное избыточное усложнение кода примеров и расстановка ключевых слов "volatile", которые вы сможете наблюдать в коде проекта OmniSample.
То же самое относится и к Visual C++ 2008/2010. Код будет конечно несколько разным, но все что будет написано здесь можно отнести как к Visual C++ 2005, так и к Visual C++ 2008.
Если вам покажется, что это только хорошо, если некоторые ошибки не проявляют себя, то гоните скорее эту мысль прочь. Код с подобными ошибками становится крайне нестабильным. И малейшее изменение кода, напрямую не связанное с ошибкой, может приводить к изменению поведения. На всякий случай подчеркну, что виноват в этом не компилятор, а скрытые дефекты кода. Далее будут показаны примерные фантомные ошибки, которые исчезают и появляются в release-версиях при малейших изменениях кода, и на которых можно долго и утомительно охотиться.
Рассмотрим первый пример кода, который работает в release-режиме, хотя делать этого не должен:
int index = 0;
size_t arraySize = ...;
for (size_t i = 0; i != arraySize; i++)
array[index++] = BYTE(i);
Данный код корректно заполняет весь массив значениями, даже если размер массива гораздо больше INT_MAX. Теоретически это невозможно, поскольку переменная index имеет тип int. Через некоторое время из-за переполнения должен произойти доступ к элементам по отрицательному индексу. Однако оптимизация приводит к генерации следующего кода:
0000000140001040 mov byte ptr [rcx+rax],cl
0000000140001043 add rcx,1
0000000140001047 cmp rcx,rbx
000000014000104A jne wmain+40h (140001040h)
Как видите, используются 64-битные регистры и переполнение не происходит. Но сделаем совсем маленькое исправление кода:
int index = 0;
size_t arraySize = ...;
for (size_t i = 0; i != arraySize; i++)
{
array[index] = BYTE(index);
++index;
}
Будем считать, что так код выглядит более красиво. Согласитесь, что функционально он остался прежним. А вот результат будет существенным - произойдет аварийное завершение программы. Рассмотрим сгенерированный компилятором код:
0000000140001040 movsxd rcx,r8d
0000000140001043 mov byte ptr [rcx+rbx],r8b
0000000140001047 add r8d,1
000000014000104B sub rax,1
000000014000104F jne wmain+40h (140001040h)
Происходит то самое переполнение, которое должно было быть и в предыдущем примере. Значение регистра r8d = 0x80000000 расширяется в rcx как 0xffffffff80000000. И как следствие - запись за пределами массива.
Рассмотрим другой пример оптимизации и как легко все испортить. Пример:
unsigned index = 0;
for (size_t i = 0; i != arraySize; ++i) {
array[index++] = 1;
if (array[i] != 1) {
printf("Error\n");
break;
}
}
Ассемблерный код:
0000000140001040 mov byte ptr [rdx],1
0000000140001043 add rdx,1
0000000140001047 cmp byte ptr [rcx+rax],1
000000014000104B jne wmain+58h (140001058h)
000000014000104D add rcx,1
0000000140001051 cmp rcx,rdi
0000000140001054 jne wmain+40h (140001040h)
Компилятор решил использовать 64-битный регистр rdx для хранения переменной index. В результате код может корректно обрабатывать массивы размером более UINT_MAX.
Но мир хрупок. Достаточно немного усложнить код и он станет неверен:
volatile unsigned volatileVar = 1;
...
unsigned index = 0;
for (size_t i = 0; i != arraySize; ++i) {
array[index] = 1;
index += volatileVar;
if (array[i] != 1) {
printf("Error\n");
break;
}
}
Использование вместо index++ выражения "index += volatileVar;" приводит к тому, что в коде начинают участвовать 32-битные регистры, из-за чего происходят переполнения:
0000000140001040 mov ecx,r8d
0000000140001043 add r8d,dword ptr [volatileVar (140003020h)]
000000014000104A mov byte ptr [rcx+rax],1
000000014000104E cmp byte ptr [rdx+rax],1
0000000140001052 jne wmain+5Fh (14000105Fh)
0000000140001054 add rdx,1
0000000140001058 cmp rdx,rdi
000000014000105B jne wmain+40h (140001040h)
Напоследок приведем интересный, но большой пример. К сожалению, мы не смогли его сократить, чтобы сохранить необходимее поведение. Именно этим и опасны такие ошибки, так как невозможно предугадать к чему приводит простейшее изменение кода.
ptrdiff_t UnsafeCalcIndex(int x, int y, int width) {
int result = x + y * width;
return result;
}
...
int domainWidth = 50000;
int domainHeght = 50000;
for (int x = 0; x != domainWidth; ++x)
for (int y = 0; y != domainHeght; ++y)
array[UnsafeCalcIndex(x, y, domainWidth)] = 1;
Данный код не может корректно заполнить массив, состоящий из 50000*50000 элементов. Невозможно это по той причине, что при вычислении "int result = x + y * width;" должно происходить переполнение.
Благодаря чуду массив все же корректно заполняется в release-варианте. Функция UnsafeCalcIndex встраивается внутрь цикла, используются 64-битные регистры:
0000000140001052 test rsi,rsi
0000000140001055 je wmain+6Ch (14000106Ch)
0000000140001057 lea rcx,[r9+rax]
000000014000105B mov rdx,rsi
000000014000105E xchg ax,ax
0000000140001060 mov byte ptr [rcx],1
0000000140001063 add rcx,rbx
0000000140001066 sub rdx,1
000000014000106A jne wmain+60h (140001060h)
000000014000106C add r9,1
0000000140001070 cmp r9,rbx
0000000140001073 jne wmain+52h (140001052h)
Все это произошло из-за того, что функция UnsafeCalcIndex проста и может быть легко встроена. Стоит ее немного усложнить, или компилятору посчитать, что встраивать ее не стоит, и возникнет ошибка, которая проявит себя на больших объемах данных.
Немного модифицируем (усложним) функцию UnsafeCalcIndex. Обратите внимание, что логика функции ничуть не изменилась:
ptrdiff_t UnsafeCalcIndex(int x, int y, int width) {
int result = 0;
if (width != 0)
result = y * width;
return result + x;
}
Результат - аварийное завершение программы, при выходе за границы массива:
0000000140001050 test esi,esi
0000000140001052 je wmain+7Ah (14000107Ah)
0000000140001054 mov r8d,ecx
0000000140001057 mov r9d,esi
000000014000105A xchg ax,ax
000000014000105D xchg ax,ax
0000000140001060 mov eax,ecx
0000000140001062 test ebx,ebx
0000000140001064 cmovne eax,r8d
0000000140001068 add r8d,ebx
000000014000106B cdqe
000000014000106D add rax,rdx
0000000140001070 sub r9,1
0000000140001074 mov byte ptr [rax+rdi],1
0000000140001078 jne wmain+60h (140001060h)
000000014000107A add rdx,1
000000014000107E cmp rdx,r12
0000000140001081 jne wmain+50h (140001050h)
Надеемся, нам удалось продемонстрировать, как работающая 64-битная программа может легко стать неработающей, после того как вы внесете в нее самые безобидные правки или соберете другой версией компилятора.
Также вам теперь будут понятны некоторые странности и причудливости кода в проекте OmniSample, которые сделаны для того, чтобы продемонстрировать ошибку в простых примерах даже в режиме оптимизации кода.
Авторы курса: Андрей Карпов (karpov@viva64.com), Евгений Рыжков (evg@viva64.com).
Правообладателем курса "Уроки разработки 64-битных приложений на языке Си/Си++" является ООО "Системы программной верификации". Компания занимается разработкой программного обеспечения в области анализа исходного кода программ. Сайт компании: http://www.viva64.com.