Мы используем куки, чтобы пользоваться сайтом было удобно.
Хорошо
to the top
close form

Заполните форму в два простых шага ниже:

Ваши контактные данные:

Шаг 1
Поздравляем! У вас есть промокод!

Тип желаемой лицензии:

Шаг 2
Team license
Enterprise license
** Нажимая на кнопку, вы даете согласие на обработку
своих персональных данных. См. Политику конфиденциальности
close form
Запросите информацию о ценах
Новая лицензия
Продление лицензии
--Выберите валюту--
USD
EUR
RUB
* Нажимая на кнопку, вы даете согласие на обработку
своих персональных данных. См. Политику конфиденциальности

close form
Бесплатная лицензия PVS‑Studio для специалистов Microsoft MVP
* Нажимая на кнопку, вы даете согласие на обработку
своих персональных данных. См. Политику конфиденциальности

close form
Для получения лицензии для вашего открытого
проекта заполните, пожалуйста, эту форму
* Нажимая на кнопку, вы даете согласие на обработку
своих персональных данных. См. Политику конфиденциальности

close form
Мне интересно попробовать плагин на:
* Нажимая на кнопку, вы даете согласие на обработку
своих персональных данных. См. Политику конфиденциальности

close form
check circle
Ваше сообщение отправлено.

Мы ответим вам на


Если вы так и не получили ответ, пожалуйста, проверьте, отфильтровано ли письмо в одну из следующих стандартных папок:

  • Промоакции
  • Оповещения
  • Спам

>
>
>
C++20: удивить линкер четырьмя строчкам…

C++20: удивить линкер четырьмя строчками кода

16 Дек 2021
Автор:

Представьте себе, что вы студент, изучающий современные фичи C++. И вам дали задачу по теме concepts/constraints. У преподавателя, конечно, есть референсное решение "как правильно", но для вас оно неочевидно, и вы навертели гору довольно запутанного кода, который всё равно не работает. (И вы дописываете и дописываете всё новые перегрузки и специализации шаблонов, покрывая всё новые и новые претензии компилятора).

Мы опубликовали и перевели эту статью с разрешения правообладателя. Автор статьи – Николай Меркин. Оригинал опубликован на сайте Habr.

А теперь представьте себе, что вы — преподаватель, который увидел эту гору, и захотел помочь студенту. Вы стали упрощать и упрощать его код, и даже тупо комментировать куски юнит-тестов, чтобы оно хоть как-то заработало... А оно всё равно не работает. Причём, в зависимости от порядка юнит-тестов, выдаёт разные результаты или вообще не собирается. Где-то спряталось неопределённое поведение. Но какое?

0899_C++20_surprise_linker_ru/image1.png

Сперва преподаватель (то есть, я) минимизировал код вот до такого: https://gcc.godbolt.org/z/TaMTWqc1T

// пусть у нас есть концепты указателя и вектора
template<class T> concept Ptr = requires(T t) { *t; };
template<class T> concept Vec = requires(T t) { t.begin(); t[0]; };

// и три перегрузки функций, рекурсивно определённые друг через друга
template<class T> void f(T t) {  // (1)
  std::cout << "general case " << __PRETTY_FUNCTION__ << std::endl;
}
template<Ptr T> void f(T t) {  // (2)
  std::cout << "pointer to ";
  f(*t);  // допустим, указатель не нулевой
}
template<Vec T> void f(T t) {  // (3)
  std::cout << "vector of ";
  f(t[0]);  // допустим, вектор не пустой
}

// и набор тестов (в разных файлах)
int main() {
  std::vector<int> v = {1};

  // тест А
  f(v);
  // или тест Б
  f(&v);
  // или тест В
  f(&v);
  f(v);
  // или тест Г
  f(v);
  f(&v);
}

Мы ожидаем, что

  • f(v) выведет "vector of general case void f(T) [T=int]"
  • f(&v) выведет "pointer to vector of general case void f(T) [T=int]"

А вместо это получаем

  • А: "vector of general case void f(T) [T=int]"
  • Б: "pointer of general case void f(T) [T=std::vector<int>]" — ?
  • В: clang выводит "pointer to general case void foo(T) [T = std::vector<int>]" — как в случае с Б. "general case void foo(T) [T = std::vector<int>]", — не так, как А! gcc — даёт ошибку линкера
  • Г: clang и gcc дают ошибку линкера

Что здесь не так?!

А не так здесь две вещи. Первая — это то, что из функции (2) видны объявления только (1) и (2), поэтому результат разыменования указателя вызывается как (1).

Без концептов и шаблонов это тоже прекрасно воспроизводится: https://gcc.godbolt.org/z/47qhYv6q4

void f(int x)    { std::cout << "int" << std::endl; }
void g(char* p)  { std::cout << "char* -> "; f(*p); }  // f(int)
void f(char x)   { std::cout << "char" << std::endl; }
void g(char** p) { std::cout << "char** -> "; f(**p); }  // f(char)
int main() {
  char x;
  char* p = &x;
  f(x);  // char
  g(p);  // char* -> int
  g(&p); // char** -> char
}

В отличие от инлайн-определений функций-членов в классе, где все объявления видны всем, — определение свободной функции видит только то, что находится выше по файлу.

Из-за этого, кстати, для взаимно-рекурсивных функций приходится отдельно писать объявления, отдельно (ниже) от определения.

Ладно, с этим разобрались. Вернёмся к шаблонам. Почему в тестах В и Г мы получили нечто, похожее на нарушение ODR?

Если мы перепишем код вот так:

template<class T> void f(T t) {.....}
template<class T> void f(T t) requires Ptr<T> {.....}
template<class T> void f(T t) requires Vec<T> {.....}

то ничего не изменится. Это просто другая форма записи. Требование соответствия концепту можно записать и так, и этак.

Но вот если прибегнем к старому доброму трюку SFINAE, https://gcc.godbolt.org/z/4sar6W6Kq

// добавим второй аргумент char или int - для разрешения неоднозначности
template<class T, class = void> void f(T t, char) {.....}
template<class T> auto f(T t, int) -> std::enable_if_t<Ptr<T>, void> {.....}
template<class T> auto f(T t, int) -> std::enable_if_t<Vec<T>, void> {.....}
..... f(v, 0) .....
..... f(&v, 0) .....

или ещё более старому доброму сопоставлению типов аргументов, https://gcc.godbolt.org/z/PsdhsG6Wr

template<class T> void f(T t) {.....}
template<class T> void f(T* t) {.....}
template<class T> void f(std::vector<T> t) {.....}

то всё станет работать. Не так, как нам хотелось бы (рекурсия по-прежнему сломана из-за правил видимости), но ожидаемо (вектор из f(T*) видится как "general case", из main – как "vector").

Что же ещё с концептами/ограничениями?

Коллективный разум, спасибо RSDN, подсказал ещё более минималистичный код!

Всего 4 строки:

template<class T> void f() {}
void g() { f<int>(); }
template<class T> void f() requires true {}
void h() { f<int>(); }

Функция с ограничениями считается более предпочтительной, чем функция без них. Поэтому g() по правилам видимости выбирает из единственного варианта, а h() – из двух выбирает второй.

И вот этот код порождает некорректный объектный файл! В нём две функции с одинаковыми декорированными именами.

Оказывается, современные компиляторы (clang ≤ 12.0, gcc ≤ 12.0) не умеют учитывать requires в декорировании имён. Как когда-то старый глупый MSVC6 не учитывал параметры шаблона, если те не влияли на тип функции...

И, судя по ответам разработчиков, не только не умеют, но и не хотят. Отмазка: "если в разных точках программы одинаковые обращения к шаблону резолвятся по-разному, такая программа ill-formed, никакой диагностики при этом не нужно" (однако, ill-formed означает "не скомпилируется", а не "скомпилируется как попало"...)

Проблема известна с 2017 года, но прогресса пока нет.

Так что живите с этим. И не забывайте объявлять взаимно-рекурсивные функции до определений. А если увидите странные ошибки линкера, то хотя бы будете понимать, из-за чего они возникают. (А если компилятор будет инлайнить наобум, — ну, тогда не повезло).

Популярные статьи по теме


Комментарии (0)

Следующие комментарии next comments
close comment form